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macromolecular dynamics of proteins in which the compo-
nents of x describe the positions in space of large numbersNumerical integration of Newton’s equation in multiple dimen-

sions plays an important role in many fields such as biochemistry of objects (e.g., stars or atoms). In particular, protein MD
and astrophysics. Currently, some of the most important practical has applications in biochemistry, protein-folding, struc-
questions in these areas cannot be addressed because the large ture-based drug design and biotechnology, and it is a major
dimensionality of the variable space and complexity of the required

application for parallel computers.force evaluations precludes integration over sufficiently large time
The practical difficulty with MD simulations in theseintervals. Improving the efficiency of algorithms for this purpose

is therefore of great importance. Standard numerical integration problems is that computational cost restricts the time pe-
schemes (e.g., leap-frog and Runge–Kutta) ignore the special struc- riod that can be integrated with feasible computational
ture of Newton’s equation that, for conservative systems, constrains effort. The dominating cost comes from evaluating F; this
the force to be the gradient of a scalar potential. We propose a

has O(N2) complexity even for the simplest potentials con-new class of ‘‘spatial interpolation’’ (SI) integrators that exploit this
taining only two-body terms and N is typically pO(104).property by interpolating the force in space rather than (as with

standard methods) in time. Since the force is usually a smoother (In some, but not all, problems this can be reduced to
function of space than of time, this can improve algorithmic effi- O(N log N) by using fast summation algorithms [1], but
ciency and accuracy. In particular, an SI integrator solves the one- evaluation of F still dominates computational cost.) As a
and two-dimensional harmonic oscillators exactly with one force

result, the most important practical questions cannot beevaluation per step. A simple type of time-reversible SI algorithm
addressed at the present time.is described and tested. Significantly improved performance is

achieved on one- and multi-dimensional benchmark prob- For example, the substrate-enclosing ‘‘flaps’’ of the hu-
lems. Q 1996 Academic Press, Inc. man immunodeficiency virus (HIV) protease protein, an

important target for structure-based drug design, have im-
portant motions in the microsecond time domain [2]. An

1. INTRODUCTION understanding of these dynamic readjustments is important
for understanding the mechanisms by which mutants ofNewton’s equation with a force F derived from a scalar
this protein acquire drug-resistance. This protein containspotential U(x) in a space of N variables is
pO(104) atoms whose spatial positions are specified by
three times as many coordinates. One would like to also
include roughly an equal number of water molecules in thed2x

dt2 5 F(x) 5 2=[U(x)]. (1)
simulation to account for solvent effects. Standard protein
conformational potentials (e.g., CHARMM [3] and

For clarity we assume that the mass factors normally pres- AMBER [4]) require pO(10) flops per pair of atoms, so
ent in Newton’s equation have been absorbed by rescaling a complete force evaluation requires pO(109) flops. Even
x and redefining U(x). Here and throughout the paper x allowing for common simplifying approximations,3
and F (and later v and a) refer to N-dimensional vectors. pO(107–108) flops per force evaluation are needed. For

Motivation for developing improved numerical tech- numerical stability, the maximum allowable time-step of
niques for solving Newton’s equation comes from the wide-
spread use of molecular dynamics (MD) programs that 3 The complexity of protein force evaluations is commonly reduced by
simulate dynamics by numerical integration. Two typical eliminating the degrees-of-freedom associated with hydrogen atoms, us-

ing a ‘‘cutoff ’’ to limit the distance range over which atomic interactionsapplications are simulations in astrophysics and in the
are considered and reducing the number of solvent molecules to a bare
minimum. These techniques are probably overexploited; at present, it is
not uncommon to encounter questionable simulations performed with1 Current address: Dept. of Mathematics, Technion-Israel Institute of

Technology, Haifa, 32000, Israel. E-mail: shay@math.technion.ac.il. overly short cutoffs and insufficient numbers of solvent molecules in an
effort to extend simulation times, regardless of accuracy [17, 18].2 E-mail: dis2@cornell.edu.
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88 GUERON AND SHALLOWAY

a simulation which includes all atomic motions is restricted Since LF is the most commonly used MD algorithm, we
use it as the primary basis for comparison, although someto be pO(10215) s, the period of the fastest oscillations of

the system. While special methods can be used to increase comparisons with a fourth-order RK algorithm are also
made. We show that, in contrast to the LF and RK meth-this by a factor of 2–5 [5–8], the minimum overall complex-

ity of a typical simulation for a molecule like HIV protease ods, the SI method exactly solves the one- and two-dimen-
sional harmonic oscillator and that it gives superior resultsis still pO(1022) flops/s simulation time. Currently, these

problems can only be effectively parallelized to O(10) when tested on multidimensional harmonic and anhar-
monic oscillator test problems.processors [10], so even long (p1 week) simulations on

parallel supercomputers (pO(107) flops/s/processor) can
only simulate periods of pO(1029–1028) s, much less

2. MOTIVATION AND OUTLINE
than desired.

OF A QUADRATIC SI ALGORITHM
Most simulation programs [3, 4] solve Newton’s equation

using standard methods for integrating second-order dif- 2.1. Spatial vs Temporal Interpolation of the Force
ferential equations. Because of the high cost of force evalu-

We first observe that the standard methods (e.g., LF andations, practical experience indicates that methods that
RK) for solving Newton’s equation (1) are actually second-evaluate the force only once per step (e.g., leap-frog (LF))
order ODE solvers for equations of the typeare the most cost-effective and are used in most available

MD software [5]. As a result, higher-order methods that
use several force evaluations per step (e.g., Runge–Kutta d2x

dt2 5 F(t). (2)(RK)) are not generally applied in this context. Because
of the need to maximize the total simulation period, it is
common practice to increase the size of the individual

That is, they work for any arbitrary (vector) force functiontime-steps until just below the point where computational
F(t). However, F in (1) has the special form of the gradientinstabilities are encountered. As a result, accuracy is deter-
of a potential. This implies that it depends on the timemined chiefly by truncation and not roundoff error. Regret-
only implicitly, through its dependence on x. Our approachfully, the resultant accuracy of computations with such
to improving efficiency is to exploit this special formlarge time-steps is arguable.
F(t) R F[x(t)].Because of the extensive use of such simulations and

To better understand SI algorithms, it is important totheir importance, a number of groups worldwide are work-
note that general-purpose second-order ODE solvers im-ing to develop new algorithms and parallelization strategies
plicitly use some means to interpolate F in t. To illustratefor extending the computationally accessible time domain.
and see later how SI differs, it is useful to review theSeveral numerical methods have recently been suggested
derivation of the LF algorithm. This is based on the Taylor(see [9] for a review), but still any improvements in accu-
series expansion at t 5 t0 :racy and efficiency are crucial.

Standard numerical integrators are designed to solve
general ordinary differential equations (ODEs) and there- x(t0 1 Dt) 5 x(t0) 1 Dt v(t0) 1 As (Dt)2 a(t0)fore do not make use of the special structure of Newton’s

1 O[(Dt)3] 1 O[(Dt)4] (3)equation (1) in which the force is the gradient of a scalar
potential. As a result of this structure, the force depends x(t0 2 Dt) 5 x(t0) 2 Dt v(t0) 1 As (Dt)2 a(t0)
on time only implicitly, through the dependence of x on

2 O[(Dt)3] 1 O[(Dt)4]. (4)
t. In this paper we present a new class of integrators that
exploit this property by interpolating the force in space

Here, v(t0) and a(t0) are the velocity and the accelerationrather than (as with standard methods) in time. Since the
at t 5 t0 , respectively. Adding (3) and (4) yieldsforce is usually a smoother function of space than of time

(with scale conversion determined by the velocity), it can
be more accurately modeled from the limited information

x(t0 1 Dt) 1 x(t0 2 Dt) 5 2x(t0) 1 As (Dt)2 a(t0) 1 O[(Dt)4].
available to the integrating algorithm when viewed as a (5)
function of x than when viewed as a function of t. We
expect that integrating algorithms based on this spatial
interpolation (SI) principle can achieve improved efficiency This symmetric combination in time of the equations for

x(t0 1 Dt) and x(t0 2 Dt) is the key to the better perfor-and accuracy.
We demonstrate this by testing simple SI algorithms on mance of LF relative to the simpler second-order Euler

method. Using Newton’s equation to replace a(t) withone- and multi-dimensional test problems. Like LF, these
algorithms only require one force evaluation per step. F[x(t)], we get the following.
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LF ALGORITHM. so the LF interpolation, described by (9), is a rather poor
approximation, especially for large Dt. Consequently, LFINPUT: a trajectory point x(t0) given at t 5 t0 , the force

F[x(t0)] evaluated at x(t0), and a previous trajectory point gives a solution to the harmonic oscillator [11]
x(t0 2 Dt).
OUTPUT: x(t0 1 Dt) calculated by xLF(n Dt) 5 x0 1 cos(gLFn Dt)[x(t0) 2 x0]

1 (1/Ïk) sin(gLFn Dt)v(t0) (13)
x(t0 1 Dt) 5 2x(t0) 2 x(t0 2 Dt) 1 (Dt)2F[x(t0)]. (6)

gLF ; (Dt)21 arc cos[1 2 k(Dt)2/2] (14)

This is equivalent to treating the second-order equation
(1) as a set of coupled first-order equations by first using which has a frequency error relative to the true frequency
F[x(t0)] to calculate the velocity v at the half-way time g 5 Ïk of
point t0 1 Dt/2,

gLF 2 g
g

P
1

24
k(Dt)2 1

3
640

k2(Dt)4 1 ? ? ?. (15)v(t0 1 Dt/2) 5 v(t0 2 Dt/2) 1 Dt F[x(t0)], (7)

and then using the computed value of v(t0 1 Dt/2) to
This solution diverges for Dt $ 2/Ïk. Qualitatively similarcalculate x at the time point t0 1 Dt,
behavior is expected for anharmonic problems but precise
analysis is difficult in those cases.

x(t0 1 Dt) 5 x(t0) 1 Dt v(t0 1 Dt/2). (8) The key to our approach is to note that while F is compli-
cated when viewed as a function of t, it may be simple

Note that (7) amounts to solving the first-order equation when viewed as a function of x. This is exemplified by
for the velocity, dv/dt 5 F(t) by using the step-wise constant comparing (10) and (12). This suggests that more accurate
interpolation for F, results can be obtained by interpolating F in x rather than

in t. We refer to the general class of algorithms that employ
this approach as SI methods.F(t) 5 F[Dt Round(t/Dt)], (9)

2.2. Quadratic SI Algorithmswhere Round(r) denotes the integer closest to r. The accu-
racy of this interpolation ultimately limits the accuracy In this paper we consider a restricted class of quadratic
of the LF method. Unfortunately, even for the simplest SI algorithms in which we: (1) approximate F as a linear
problems, F(t) is a complicated and rapidly varying func- function in x (i.e., U is approximated by a quadratic func-
tion of t. As a result, a constant interpolation of F in t will tion), and then (2) integrate Newton’s equation analytically
generally be valid only over very short time intervals, and for this approximate function. More specifically, for a step
methods based on such interpolations require very small beginning at x(t0),
time-steps for reasonable accuracy.

1. Calculate a symmetric matrix K that governs theThis point is illustrated by considering the one-dimen-
linear approximation f(x) to F(x) in the region sur-sional harmonic oscillator described by (1) with force
rounding x(t0),

F(x) 5 2k(x 2 x0) (10)
F(x) P f(x) ; Ft0

2 K[x 2 xp(t0)], (16)
for some k . 0. Its analytic solution with initial conditions
x(t0), v(t0) is where xp(t0) is a point near x(t0) (we will see below why

xp and x(t0) are not identical) and
x(t) 5 x0 1 cos[Ïk (t 2 t0)][x(t0) 2 x0]

(11)
1 (1/Ïk) sin[Ïk (t 2 t0)]v(t0). Ft0

; F[xp(t0)]. (17)

Even in this simple case, F[x(t)] R F(t) has the compli- f has the property f [xp(t0)] 5 F[xp(t0)]. The symmetricity
cated form of K follows from the fact that F is the gradient of a scalar

potential. The procedure for calculating it will be described
in the next section.F(t) 5 2khcos[Ïk (t 2 t0)][x(t0) 2 x0]

(12)
1 (1/Ïk) sin[Ïk (t 2 t0)]v(t0)j 2. Solve the simplified Newton’s equation d2x/dt2 5
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f(x) with initial conditions x(t0), v(t0). The analytic solu- We could consider a two-point method that used F[x(t0)]
and F[x(t0 2 Dt)] to fix K. This approach has two deficien-tion is
cies. First, the solution of Newton’s equation by (19) would
involve the use of an extrapolation of F into the regionx(t) 5 x(t0) 1 K21 ? h1 2 cos[ÏK(t 2 t0)]j
between x(t0) and x(t0 1 Dt). This is undesirable since, with? hFt0

2 K ? [x(t0) 2 xp(t0)]j (18)
the relatively large time-steps used in typical calculations,1 K21/2 ? sin[ÏK(t 2 t0)] ? v(t0).
the extrapolation could be less accurate than the constant
F approximation used by LF. Second, this method wouldMimicking the derivation of the LF method, we add the
not be time-reversible; the value of K used for propagationsolutions for x(t0 1 Dt) and x(t0 2 Dt) calculated from (18)
forward in time from x(t0) to x(t0 1 Dt) would depend onto obtain
F[x(t0)] and F[x(t0 2 Dt)], while the value of K used for
propagation backward in time from x(t0) to x(t0 2 Dt)x(t0 1 Dt) 5 2x(t0) 2 x(t0 2 Dt) 1 (Dt)2j(ÏK Dt)

(19) would depend on F[x(t0)] and F[x(t0 1 Dt)]. Because the
? hFt0

2 K ? [x(t0) 2 xp(t0)]j,
forward and backward K’s would differ, the trajectory
would not be retraced under time-reversal.where

To overcome these deficiencies, we must calculate K
using a time-reversal invariant method which uses forces

j(u) ; 2u22 ? [1 2 cos(u)]. (20) evaluated at points that lie both forward (i.e., in the future)
and backward (in the past) along the trajectory. The prob-

The cosine of the matrix ÏK Dt that is required to evaluate lem is how to get information in the forward direction. This
j can be computed in the vector basis that diagonalizes K. is accomplished by using a predictor–corrector method in
Since, as discussed in Section 4, the rank of K is small even which: (1) a time-reversible predictor step is taken from
for large-dimensionality problems, this is always inexpen- x(t0) to a predictor point xp(t0 1 Dt); (2) Ft01Dt ; F[xp(t0 1
sive. The apparent singularity in j occurring when K is Dt)] is evaluated at this point; and (3) K is calculated using
singular is removable and causes no difficulty. the three forces Ft02Dt , Ft0

, and Ft01Dt (where Ft02Dt and Ft0
are the forces that had been evaluated at prior predictor

2.3. Calculating K points). As long as Ft02Dt and Ft01Dt are treated symmetri-
cally, this three-point calculation of K will be time-reversalTime-reversibility is a fundamental property of conser-
invariant. We can then calculate a time-reversible correctorvative Hamiltonian systems described by Newton’s equa-
step, using the new K and (19) to move to the correctedtion and should be preserved by the trajectories computed
trajectory point x(t0 1 Dt). Since all steps in the algorithmby the appropriate numerical integrating algorithms. This
are time-reversible, the entire algorithm will be time-re-is the case for each step of LF since (6) is invariant under
versible. Furthermore, like LF, it only requires one forceDt R 2Dt. Thus, if a trajectory propagated forwards in
evaluation per step.time from initial conditions4 [x(2Dt), x(0)] goes to [x(T 2

Since no future force information will be available atDt), x(T)], then the trajectory propagated backwards in
the time that the predictor step is taken, to be time-time, starting from the initial conditions [x(T 2 Dt), x(T)],
reversible the predictor must not use information from thewill arrive back at [x(2Dt), x(0)]. The SI step equation
past; it must be guided only by the current force, Ft0

. As(19) is also invariant under time-reversal, so the overall SI
discussed above, this is equivalent to using the LF algo-algorithm will be invariant as long as K is calculated by a
rithm. Furthermore, to obtain a time-reversible algorithm,time reversal-invariant method.
the future and past predictor points xp(t0 1 Dt) andDifferent methods, using information obtained from cal-
xp(t0 2 Dt) must enter the algorithm symmetrically; thisculating the force at one, two, three, or more points near
leads to the modified LF predictor given in (21) below.x0 , can be imagined. Each will lead to a different SI algo-
The complete time-reversible algorithm isrithm. For example, using only Ft0

would be equivalent to
assuming that the force is constant (i.e., F 5 Ft0

) over the THREE-POINT QUADRATIC SI ALGORITHM.
interval [t0 2 Dt, t0 1 Dt]. This is equivalent to choosing INPUT: the current and past trajectory points x(t0) and
K 5 0 in (16). In this case, j(ÏK Dt) R 1 and (19) reduces x(t0 2 Dt), the current and past predictor points xp(t0) and
to (6). That is, the trivial one-point SI algorithm is identical xp(t0 2 Dt), and the forces evaluated at these predictor
to the LF algorithm. It follows that a nontrivial SI algorithm points Ft0

; F[xp(t0)] and Ft02Dt ; F[xp(t0 2 Dt)].
must use the values of F evaluated for at least two points OUTPUT: the values at t0 1 Dt calculated by the follow-
to calculate K. ing steps:

a. Predictor (modified LF),
4 Specifying the initial position pair is equivalent to specifying an initial

xp(t0 1 Dt) 5 2x(t0) 2 xp(t0 2 Dt) 1 (Dt)2Ft0
. (21)position and velocity.
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b. Compute interpolation parameter K. Evaluate exact for any Dt. This is demonstrated in Fig. 1, where we
compare the performance of SI and LF methods on the
one-dimensional harmonic oscillator for two different size

Ft01Dt ; F[xp(t0 1 Dt)]. (22)
time-steps. In these examples we set k 5 1 and x0 5 0 in
(10) and Dt 5 Ï2/2 (Fig. 1a) or Dt 5 1 (Fig. 1b). (The

and calculate K using a time-reversal-invariant pro- initial conditions were x(0) 5 0 and v(0) 5 1.) As discussed
cedure (to be specified) involving Ft02Dt , Ft0

, and above, these time-steps are representative of those used
Ft01Dt . in practice for LF, since they are fairly close to its critical

instability limit Dt 5 2 determined by (14).c. Corrector. Compute x(t 1 Dt) using (19).
As expected, the exact harmonic trajectories and the SI

trajectories are identical in both plots. As predicted by
3. A ONE-DIMENSIONAL IMPLEMENTATION OF THE (14), the LF trajectory oscillates too rapidly. For Dt 5

QUADRATIC SI ALGORITHM Ï2/2, gLF 5 1.022g, and the LF trajectory is significantly
out-of-phase within a few cycles. For Dt 5 1, gLF 5 1.047g,We first consider some simple one-dimensional exam-
and the LF trajectory goes out-of-phase even more rapidly.ples to demonstrate how the quadratic SI algorithm works.

Because fourth-order RK makes four force evaluationsFor this N 5 1 case K is a scalar. It is time-reversibly fixed
per time-step, for an equal-cost comparison it was testedby the requirement
with Dt 5 2Ï2. However, it is unstable under these condi-
tions (not plotted in Fig. 1). With Dt 5 Ï2 (i.e., double

K 5 2DF/Dx, (23) cost) RK is stable but becomes highly inaccurate after
three cycles.

where
3.2. Performance on a One-Dimensional

Anharmonic Oscillator
Dx ; xp(t0 1 Dt) 2 xp(t0 2 Dt)

(24) We next compare the performance of SI, LF, and RK
DF ; Ft01Dt 2 Ft02Dt . on the anharmonic oscillator defined by Newton’s equation

with a nonlinear force:

The interpolation f defined by (16) automatically satisfies
d2x
dt2 5 F ; 2kx 2 ax3. (27)

f [xp(t0)] 5 Ft0
, (25)

This problem poses a greater challenge for SI since the
and with (23) it also satisfies quadratic interpolation is not exact and, like LF and RK,

quadratic SI cannot compute the exact solution. In Fig. 2a
we compare the equal-cost performance of the SI and LFf [xp(t0 1 Dt)] 2 f [xp(t0 2 Dt)] 5 Ft01Dt 2 Ft02Dt . (26)
methods with k 5 a 5 1 and Dt 5 Ï2/2 (with initial
conditions x(0) 5 0 and v(0) 5 1). Visual inspection indi-In the special case where the potential is quadratic f will
cates that the performance of SI is much better than thatexactly match F at all points, but this is not true in general.
of LF. A quantitative measure of their relative accuracies
is provided by the fractional errors in their dominant fre-

3.1. Performance on the One-Dimensional quencies (determined from the numerical Fourier trans-
Harmonic Oscillator form) relative to the dominant frequency g of the exact

solution.5 We obtain DgLF/g P 0.39 and DgSI/g P 0.026,The maximum time-step that can be used in MD simula-
indicating that SI is about 15 times more accurate than LFtions is generally determined by the period of the fastest
for this problem. The equal-cost RK trajectory is unstable.oscillations in the system. Usually, these are approximately

To obtain a measure of relative efficiency, the samesinusoidal motions, so good performance on the harmonic
problem was analyzed using a different time-step for eachoscillator is critical. We are primarily interested in compar-
method chosen so that each method had roughly the sameing performance to LF since it is customarily used in MD
dominant frequency error Dg/g P 0.02. This occurredapplications. However, equal-cost comparisons with

fourth-order RK were also performed.
Since, for the one-dimensional harmonic oscillator, the 5 The exact solution can be expressed in terms of elliptic functions [19],

interpolated force f exactly equals the actual force F, in but for simplicity was computed to very high accuracy using the RK
method with the very small (and costly) time-step Dt 5 0.005.contrast with the LF and RK methods, the SI method is
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FIG. 1. Comparison of spatial interpolation (SI) and leap-frog (LF) numerical trajectories for the one-dimensional harmonic oscillator with
F(x) 5 2x: (a) The numerically calculated trajectories are compared with the exact trajectory for Dt 5 Ï2/2 with initial conditions x(0) 5 0
and v(0) 5 1. (b) As in (a) except that Dt 5 1. In both panels, the SI trajectory exactly overlays the exact solution and cannot be distinguished
from it.
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FIG. 2. Comparison of SI, LF, and RK numerical trajectories for a one-dimensional anharmonic oscillator with F(x) 5 2x 2 x3 : (a) Equal-
cost comparison of the numerically calculated trajectories with the exact trajectory for x(0) 5 0 and v(0) 5 1. The time-step used for each method
is proportional to its number n of force evaluations per time-step (nLF 5 nSI 5 1, nRK 5 4) so that each trajectory calculation required the same
total number of force evaluations (Dt/n 5 Ï2/2). The RK trajectory is not shown since it diverges. (b) Equal-accuracy comparison with the same
initial conditions. As in (a), but the time-step for each method was selected so that each method achieved approximately equal accuracy, i.e., having
a dominant frequency error of p0.02 ((Dt/n)SI 5 Ï2/2, (Dt/n)LF 5 Ï2/6, (Dt/n)RK 5 Ï2/8). Quantitative results are listed in Table I.
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when DtSI 5 Ï2/2, DtLF 5 Ï2/6, and Dt/nRK 5 Ï2/2. The we impose as a second constraint,
trajectories are shown in Fig. 2b. Allowing for the fact that
RK uses four force evaluations per time-step, we conclude P' ? K ? Dx2 5 Dx2 ? K ? P' 5 2P' ? DF2 . (35)
that SI is about three times more efficient than LF and
about four times more efficient than RK for this problem. Taking

K 5 Ki 1 K' , (36)4. A MULTIDIMENSIONAL IMPLEMENTATION OF
THE SI METHOD

where
In multiple dimensions K is a symmetric tensor. It is

K' ? « 5 « ? K' 5 0, (37)partially fixed by the multidimensional generalization of
(23),

and using (35), we get the condition on K'

K ? Dx 5 Dx ? K 5 2DF, (28)
K' ? Dx2 5 Dx2 ? K' 5 2DF' , (38)

where Dx and DF are still defined by (24). Equation (28) where
is solved by

DF' ; P' ? [DF2 2 DF(« ? Dx2)/uDxu]. (39)
Ki 5 2[DF ^ « 1 « ^ DF 2 (DF ? «)« ^ «]/uDxu, (29)

This has the solution
where

K' 5 2[DF' ^ «' 1 «' ^ DF' 2 (DF' ? «')«' ^ «']/uDx'u,
(40)

« ; Dx/uDxu. (30)

where
The components of Ki that are orthogonal to both Dx
and DF are not determined by (28) and the symmetricity Dx' ; P' ? Dx2 (41)
requirement; (29) sets them to zero.

«' ; P' ? Dx2/u P' ? Dx2u. (42)As long as xp(t0), xp(t0 2 Dt), and xp(t0 1 Dt) are not
colinear, the two independent force differences between

As with (29), (40) sets the components of K' that are notthese points will constrain the elements of K in two distinct
fixed by (38) and the symmetricity requirement to zero.directions. Some, but not all, of this information is included

Using (28) it is easy to show that definition (40) of K'in (28). We would like to use a second constraint to improve
is invariant under the substitutionsour approximation for K, but we cannot simply impose a

second condition like
Dx2 R Dx1 ; xp(t0) 2 xp(t0 1 Dt)

K ? Dx2 5 Dx2 ? K 5 DF2 (not used), (31) DF2 R DF1 ; Ft0
2 Ft01Dt .

Thus K' , as well as K calculated by (36), is time-reversal-where
invariant. This invariance can be made explicit by rewriting
(39) as

Dx2 ; xp(t0) 2 xp(t0 2 Dt) (32)

DF' ; P' ? [DFa 2 DF(« ? Dxa)/uDxu], (43)DF2 ; Ft0
2 Ft02Dt , (33)

wherebecause it cannot, in general, be simultaneously satisfied
along with (28). A number of alternative conditions could

Dxa ; (Dx2 1 Dx1)/2be applied. A simple, although possibly not optimal, ap-
proach is to impose the second condition only in the sub- DFa ; (DF2 1 DF1)/2.
space orthogonal to «. Defining the orthogonal space pro-
jection operator However, (39) is simpler for computation.

In two dimensions, if U is quadratic the interpolated
force f specified by (16) with (29), (36), and (40) will exactlyP' ; 1 2 « ^ «, (34)
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match F everywhere, just as in the one-dimensional qua- evaluations per time-step). For graphical comparison (Fig.
3), the computed trajectories for the components of x cor-dratic case. Thus, SI will also give the exact solution for

any time-step for the two-dimensional harmonic oscillator. responding to the smallest (0.0096; part a) intermediate
(0.4798; part b), and largest (0.9180; part c) eigenvalues ofHowever, when the dimensionality is three or greater,

Ft02Dt , Ft0
, and Ft01Dt will not provide sufficient information K (corresponding to oscillation frequencies g 5 ÏK) are

plotted in comparison with the exact trajectory compo-to completely determine all the elements of K, even when
the potential is quadratic. Thus, we will not exactly solve nents. In all of these cases, the SI trajectory matches the

exact solution almost perfectly (and can thus be barelythe multidimensional (N $ 3) harmonic oscillator. How-
ever, we do expect that using even the approximate K distinguished from the exact trajectories in the figures).

The performances of LF and RK deteriorate as the eigen-specified by the above interpolation will provide improved
accuracy relative to LF both for harmonic and anhar- values increase. For the smallest eigenvalue all three meth-

ods are very accurate. For the intermediate size eigenvalue,monic problems.
If the matrix operations required to evaluate K and LF goes out of phase significantly after seven cycles and

the equal-cost RK trajectory yields highly inaccurate re-j(ÏK Dt) (see (20)) had to be performed in the full N-
dimensional space, the SI method would have O(N3) com- sults. For the largest eigenvalue, LF goes quickly out of

phase and the corresponding RK trajectory is unstable.plexity and would not be useful. The key to its practical
utility is that all these operations can be performed in a The accuracy of the SI and LF methods were quantita-

tively assessed by computing the errors in the dominantrestricted subspace of small dimensionality. Note that K
operates only within the four-dimensional subspace frequencies of their trajectories (Table I). (The RK trajec-

tory was too inaccurate for such analysis). This shows thatspanned by DF, DF' , «, and «' , so all K-dependent opera-
tions can be restricted to this subspace. « and «' already SI is more or less equivalent to LF for the smallest eigen-

value, p16 times more accurate than LF for the intermedi-provide two orthonormal basis vectors for the subspace;
two additional basis vectors can be obtained from DF and ate eigenvalue, and .20 times more accurate for the largest

eigenvalue. Since the overall performance (and maximumDF' by Gramm–Schmidt orthogonalization with only
O(N) complexity. Then the cosine and pseudo-inverse usable time-step) is determined by the largest eigenvalue,

the advantage of the SI method is well established.needed to evaluate j using (20) can be computed within
the eigenvector basis of K at negligible O(1) cost. Similarly, To compare efficiencies, we determined the time-step

for each method that would give the same error ((Dg/g)the matrix–vector multiplications in the SI step equation
(19) can be efficiently calculated by first projecting the p 0.03) for the largest eigenvalue mode. The results (Table

I) indicate that, in this problem, SI is approximately 4 timesrelevant vectors (i.e., DFt0
and x(t0) 2 xp(t0)) into the four-

dimensional subspace at cost O(N). Thus, like LF, the more efficient than LF and 5 times more efficient than RK.
overall complexity of the quadratic SI algorithm ignoring

4.2. Performance on a Multidimensionalthe force evaluation is O(N), and the O(N2) complexity
Anharmonic Oscillatorof evaluating F still dominates the cost.

A multidimensional nonlinear test was performed using
4.1. Performance on a Multidimensional the anharmonic oscillator defined by

Harmonic Oscillator

F(x) 5 2K ? x 2 aG(x), (44)The performance of the quadratic SI method using the
three-point interpolation for K was tested using the 10-
dimensional harmonic oscillator specified by (1) with a where G(x) is the nonlinear part of the force term. The
force term F(x) 5 2K(x 2 x0), where k was a randomly ith component of Gi(x) was chosen as
chosen symmetric positive-definite 10-dimensional matrix
and, without loss of generality, x0 5 0. The eigenvalues of Gi(x) 5 x3

i ux11i mod N u, i 5 1 ? ? ? N, (45)
K spanned an p100-fold range from 0.9180 down to
0.0096.6 The analytic solution of this problem is the multidi- where N is the dimensionality of the problem. Since G is
mensional generalization of (11) and can be computed in not diagonal, all the components are mixed. We used a 5
the K eigenvector basis. 0.3 and the same 10-dimensional (N 5 10) matrix K and

The performances of SI, LF, and RK with randomly initial conditions7 as were used in Section 4.1.
chosen initial conditions7 were compared on an equal-cost
basis using Dt/n 5 1 (where n is the number of function

7 The components of x(0) and v(0) in the K eigenvector basis were
(0.8837, 0.6670, 0.4908, 0.5314, 0.6501, 0.6986, 0.2733, 0.5744, 0.1614,
0.9761) and (0.3491, 0.0854, 0.1542, 0.4506, 0.0805, 0.3850, 0.4598, 0.4489,6 The eigenvalues of K were 0.9180, 0.7990, 0.7934, 0.7559, 0.6465,

0.6449, 0.6391, 0.4798, 0.3743, and 0.0096. 0.0301, 0.4072), respectively.
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FIG. 3. Equal-cost comparison of SI, LF, and RK numerical trajectories for a 10-dimensional harmonic oscillator with F(x) 5 2K ? x. The
eigenvalues of K were randomly selected positive values lying between 0 and 1. These and initial conditions are described in Section 4.1. The
number of force evaluations per time interval was Dt/n 5 1. SI, LF, RK, and exact solution trajectories for the (a) low (gi

2 5 ki 5 0.0096), (b)
medium (ki 5 0.4798), and (c) high (ki 5 0.9180) frequency components of the x(t) trajectory are plotted. The SI trajectory is almost identical with
and can barely be distinguished from the exact trajectory. Quantitative results are listed in Table I.
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FIG. 3—Continued

For an equal-cost comparison we computed trajectories scribed a new class of spatial interpolation algorithms that
exploit this property to improve integrator performancewith Dt/n 5 1. The SI, LF, and RK trajectory components

corresponding to the 0.0096, 0.4798, and 0.9180 eigenvalues by interpolating the force in space rather than in time
and we have demonstrated the superior performance of aof K are compared with the exact trajectory components8

in Fig. 4. (The equal-cost RK trajectory is not shown since simple algorithm of this type.
While the performance of standard ODE integrators canit is unstable and blows up quickly.) LF initially displays

acceptable performance (although it is clearly inferior to be formally described in terms of their order of accuracy
in Dt, this is not possible for SI algorithms. Their accuracySI) but becomes unstable for t . 80 because of accumulat-

ing errors in the 0.0096 eigenvalue mode (part a). (The depends both on Dt and on the spatial fluctuation of F in a
complicated manner. Thus, we have empirically comparedinstability occurs first in this mode because of the greater

relative importance of the anharmonic term when K is our algorithm with the LF and fourth-order RK methods
on a few one- and multi-dimensional test problems. Thesmall.) In contrast, the SI trajectory is stable over the

entire interval. results for trajectories of moderate length demonstrate two
related points:To compare efficiencies, we determined the time-step

for each method that would give the same error ((Dg/g) p 1. The SI algorithm is more accurate than LF for equal
0.188) for largest eigenvalue mode. The results (Table I) cost; SI was over an order-of-magnitude more accurate
indicate that, in this problem, SI is approximately 4.5 times than LF in some of the test cases when equal time-steps
more efficient than LF and 8 times more efficient than RK. were used.

2. The SI algorithm is more efficient than LF for equal5. CONCLUSION
accuracy; in the tested cases, SI required about 3–4 fewer
force evaluations than LF for equal accuracy.General-purpose ODE integrators ignore the fact that

the force in Newton’s equation (for conservative systems) Performance was even better when compared against the
is the spatial gradient of a scalar potential. We have de- fourth-order RK method.

However, while SI generally outperformed and was
more stable than LF, we have found that it can be less8 The ‘‘exact’’ trajectory was computed using RK with Dt 5 0.005.
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FIG. 4. Equal-cost comparison of SI and LF numerical trajectories for a 10-dimensional anharmonic oscillator with F(x) 5 2(K ? x)i 2

0.3xi
3ux11i mod N u. The matrix K, time steps, and initial conditions were the same as in Fig. 3. SI, LF, and exact solution trajectories for the (a) low

(gi
25 ki 5 0.0096), (b) medium (ki 5 0.4798), and (c) high (ki 5 0.9180) frequency components of the x(t) trajectory are plotted. The RK trajectories

are not shown because they are unstable. The LF trajectory is unstable for t . 83 so the plots of all its components are terminated. Quantitative
results are listed in Table I.
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FIG. 4—Continued

stable than LF in some situations. For example, although and there are many ways to improve the SI algorithm
before proceeding to performance testing in large-scaleSI outperforms LF over the time domain considered in

the multidimensional harmonic oscillator example, after problems. In particular, more sophisticated methods for
interpolating the force and potential could be applied. Formany hundreds of steps it becomes unstable while LF re-

mains stable. This occurs because the inherent nonlinearity example, the three-point interpolation described in Section
4 only utilizes knowledge of the force F(x), not of thein F of the SI step (19) ‘‘mixes’’ the motions in the different

coordinates to generate trajectories which curve within a potential U(x). However, U(x) can be evaluated at little
additional cost and can provide additional information thatsingle step. This is in contrast with the linear LF step (6)

which treats motion in each component independently. is useful in maintaining long-term energy conservation.
Furthermore, it is not necessary to restrict SI to the useThis independence is appropriate for simple problems like

the harmonic oscillator but it may be a disadvantage for of quadratic potential interpolations. While the simple ana-
lytic form (19) of the SI time-step in a quadratic potentialmore complex problems, where the different components

are coupled. In most cases the nonlinearity of the SI step simplifies computation, the SI steps for more complex in-
terpolating potentials could be calculated numerically. Theis helpful and permits it to model the curved trajectories

with higher accuracy. However, this can cause slowly accu- cost for this would be minimal since, as discussed in Section
4, all motion within a single SI step occurs within a subspacemulating errors in energy transfers between dynamic

modes of the system. This error is probably not important of small dimensionality. A single step could be subdivided
into many smaller mini-steps, and the force at each mini-in realistic MD problems where velocity-rescaling or other

algorithmic modifications to ensure long-term energy con- step could be evaluated from the interpolating potential.
The cost of projecting the relevant x, xp , and F(xp) vectorsservation are already used to cope with errors induced by

other approximations. It may be possible to control this into the subspace is only O(N) and, because all subsequent
mini-step force evaluations would occur within the small-error simply by resetting the algorithm every few hundred

steps, but more investigation is needed. dimensionality subspace, the mini-steps could be computed
in O(1). We believe that further developments along theseOur primary goal here has been to evaluate the utility

of the SI principle in basic test cases. The implementation lines can lead to even greater enhancement in perfor-
mance.we have presented is simple but not necessarily optimal,
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TABLE I into Newton’s equation [14–16]. This converts Newton’s
equation into the Langevin equation and allows the moreFractional Errors (Dg/g) in the Dominant Frequencies of the
stable backwards-Euler integrator to be used with a longerNumerical Trajectories Computed by the Spatial Interpolation
time-step. In addition, there are many methods for approx-(SI), Leap-Frog (LF), and Fourth-Order Runge–Kutta (RK)

Methods imating F to reduce the cost of its evaluation (e.g., see [1]).
In all of these methods the conservative part of F is a

Problem Dt/n k SI LF RK function of x so the SI principle is still applicable. Thus,
it may be possible to combine their benefits with those of1D HO Ï2/2 1 0 0.022 Unstable
SI in hybrid algorithms.1 1 0 0.047 Unstable
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